[image: image15.png]

WLANMon

Wireless Network Adapter Monitoring Tool

User’s Guide

Version 0.1

September 27, 2005
DRAFT

Table of Contents

41
Getting Started

42
Introduction

52.1
General property page

62.2
Transmit/Receive statistics property page

82.3
Station property page

92.4
Driver property page

102.5
Custom OIDs property page

122.6
Monitor property page

133
Configuration

133.1
Dialog

153.2
Script

153.2.1
Defining configuration script file

153.2.2
Sample: Adding Scan list filters using configuration script file

163.3
Command line parameters

173.4
WlanMon.oid file

183.5
Formatters

183.5.1
String Formatter

183.5.2
DWORD formatter

193.6
Loggers

193.6.1
Text logger

203.6.2
Binary logger

204
WlanMon Application Programming Interface

204.1
Objects

204.2
WlanMon.Helper object

214.3
Adapter object

214.4
Samples

List of Figures

4Figure 1 General property page

5Figure 2 Transmit/Receive statistics property page

5Figure 3. Context menu for Transmit/Receive statistics property page

7Figure 4 Station property page

8Figure 5 Driver property page

9Figure 6 Custom OIDs property page

10Figure 7 Modify OID dialog

11Figure 8 Configure String Formatter dialog

12Figure 9 Monitor property page

13Figure 10 Display Configuration property page

13Figure 11 Log File Configuration property page

14Figure 12 Configuration Script property page

1 Getting Started
WlanMon is a tool for monitoring Atheros Wireless Network Adapters. The packaging provides following files:
· WlanMon.exe

· WlanMonHelper.dll

· WlanMon.bat

· Readme.txt

To install copy files into local directory and run WlanMon.bat. This step is necessary to register WlanMonHelper.dll, which is an automation server providing functionality to WlanMon executable. Alternatively, you can register WlanMonHelper.dll using command processor with the following command (be sure to change current directory to where WlanMon is located):
regsrv32.exe WlanMonHelper.dll

This step is required only once. Subsequently you can run WlanMon executable itself.

Note: WlanMon.exe may register WlanMonHelper.dll for you, if you did not run WlanMon.bat before. However, in this scenario not all features of the application will be available at first run until you restart WlanMon application (close WlanMon main window and run it again).
2 Introduction

WlanMon has six property pages, menu, toolbar and status bar.
You can choose active adapter from the choice-box inside the toolbar. Information on property pages will reflect currently selected adapter data.
There are toolbar buttons to start or stop scheduled data collecting from adapter, manual (on-demand) data collection and well as log file data logging and adapter properties.

Menu provides options to start or stop scheduled data collecting from adapter, manual (on-demand) data collection, driver load or unload and adapter properties functionality.

WlanMon configuration options are also available through Options->Settings menu item and will be discussed later.
2.1 General property page

[image: image1.png]
Figure 1 General property page
General property page displays information on selected adapter.
2.2 Transmit/Receive statistics property page

[image: image2.png]
Figure 2 Transmit/Receive statistics property page
This page displays transmit and receive statistics for selected adapter.

Context menu provides the following selections:

[image: image3.png]
Figure 3. Context menu for Transmit/Receive statistics property page

· Displays selected item name
· Allows configuring the display

· Allows adding selected item to monitor window (external or internal)
Select “Monitor:X“ to add selected item to monitor window inside the Monitor Property Page or select “New Monitor Window” to add selected item to new external monitor window.
See Monitor Property Page for more information.

2.3 Station property page

[image: image4.png]
Figure 4 Station property page

Station property page displays information on station.

Refresh button will send rescan request to driver to update scan list array. This has no impact on refresh interval used for updating display values.

Combobox left to the Refresh button shows selected filter for scan list. There are two predefined filters built-in to WlanMon.
· Show roaming candidates only

· Remove networks supporting XR from the list
Note: custom filters may be added using configuration script. See Configuration Script section for more details.
2.4 Driver property page

[image: image5.png]
Figure 5 Driver property page

This page provides information on driver as well as NDIS driver statistics.
Context menu allows configuring the display, adding selected item to monitor window (external or internal)

2.5 Custom OIDs property page

[image: image6.png]
Figure 6 Custom OIDs property page

Displays results for custom OIDs queried from driver.

To add new OID – press Add button. To modify existing OIDs select OID in the window and press Modify button. “Delete” and “Delete All” buttons will delete selected and all OIDs from the list.
When you Add or Modify OID the following dialog appears:

[image: image7.png]
Figure 7 Modify OID dialog
Enter display name for OID in the Name field. This field is already filled with the predefined OIDs read from the WlanMon.oid file if it is found in the executable directory. The More button provides function to upload more OID definitions.
Enter OID numeric value (hex or decimal accepted) into the Value field.

Buffer Size specifies size in bytes for exchange buffer with driver. The value of this field depends on the OID you are trying to query. In case buffer may be of variable length WlanMon provides two more values for Buffer Size – max and step. When specified, they defines the maximum buffer size and increment step for buffer reallocations if query OID has failed.
Example:

Buffer size
1000 bytes min

5000 bytes max

1000 bytes step

WlanMon will try initially to query OID with 1000-bytes exchange buffer. If query OID has failed, buffer size will be incremented by another 1000 bytes and query will be performed again. This will repeat with incremented buffer until query OID succeed or buffer size reach specified maximum of 5000 bytes.
Display Formatter field specifies the formatter used when buffer should be displayed. Currently WlanMon has two built-in formatters – DWORD and String formatters.

Press Configure button next to this field to configure selected formatter.
[image: image8.png]
Figure 8 Configure String Formatter dialog

The above figure shows Configure dialog for built-in String Formatter. Dialogs are specific to formatter. For more information on formatter see Formatters section later in this document.
2.6 Monitor property page

[image: image9.png]
Figure 9 Monitor property page
Displays information on selected adapter in various formats. For more information refer to PerfMon documentation or press [image: image10.png] button.
3 Configuration
You can configure WlanMon using Configuration Dialog and/or Configuration Script.

Both methods are described below.

3.1 Dialog

To start configuration dialog select Options->Settings… from WlanMon menu.
The following dialog will appear:

[image: image11.png]
Figure 10 Display Configuration property page
You can configure data display mode, data refresh interval as well as PerfMon window count on Monitor Property Page and whether adjust these windows scale based on the data retrieved from the driver.

[image: image12.png]
Figure 11 Log File Configuration property page
Log file can be configured using Log File page. If Increment File Name checkbox is checked, log file name will be modified based on current time and time on each WlanMon start.

Logger combobox lists available loggers. See Loggers section later in this document for more information on loggers.
Note: this page only specifies the log file, to start (or stop) logging, you should press [image: image13.png] button on the toolbar.

See next section of information how to use script to configure WlanMon.
3.2 Script
3.2.1 Defining configuration script file
[image: image14.png]
Figure 12 Configuration Script property page
Select scripting language which will be used to interpret script you specified under Configuration Script Path.
When specify new script file, always restart WlanMon. Script files are loaded on WlanMon start, so changing them while WlanMon is running has no effect until application is reloaded.
3.2.2 Sample: Adding Scan list filters using configuration script file

The following configuration script provides an example of custom filters for scan list in the Station Property Page. Scripting language is VBScript
	SUB ScanListFilterSample(sl)

nStart = LBound(sl)

nStop = UBound(sl)

for i = nStart + 15 to nStop

sl(i).Valid = vbFalse

next

END SUB

SUB ScanListFilterSample2(sl)

nStart = LBound(sl)

nStop = UBound(sl)

for i = nStart to nStop

if sl(i).NetworkType = "infrastructure network" Then

sl(i).Valid = vbFalse

end if

next

END SUB

AddScanListFilter "First 15 only", "ScanListFilterSample"

AddScanListFilter "Ad-hoc networks only", "ScanListFilterSample2"

Create new file WlanMon.vbs. Enter content of the above script into that file. Specify new configuration script as described in the above section.
This script defines two new custom filters for scan list, ScanListFilterSample and ScanListFilterSample2. WlanMon passes array of scan list items to this function. Each scan list item is represented by the following properties:
BSSID

Channel

Frequency

NetworkType

Privacy

RSSI

SSID

Super

SupportedRates

XR
and Valid flag initially set to TRUE. Scan List filter procedure should set this flag to FALSE to remove scan list item from the display list based on some criteria and analyzing properties listed above.
Note: all properties are strings as shown by WlanMon.

Script uses AddScanListFilter() method to add custom scan list filter to the display list.

Function accepts two mandatory parameters, display name for the filter, and the method name in the script to add.
3.3 Command line parameters

The following command line parameters are accepted by WlanMon

	-l Log_file_name
	sets log file name, text logger will be used by default

	-r rate_in_ms
	sets refresh rate in ms

	-d N
	sets display type, where N=0 if cumulative, or N>0 if relative data display is desired

	-dbg Mx
	sets data collection mode, M0, M1 sets megaoid collection mode, M2 sets individual oid collection mode

3.4 WlanMon.oid file
WlanMon.oid file provides predefined list of OIDs. If WlanMon finds this file in the executable directory then loads the content of this file into the Add/Modify OID dialog.

Note: Add/Modify OID dialog allows loading files with different names but similar content. Thus, there may be many OID files, each representing group of OIDs (by manufacturer, group, etc).
Below are the rules of WlanMon.oid (or custom .oid) file.

Lines starting with # are comments and ignored
Each line which is not a comment should have the following values specified with comma as a delimiter:
OID Display Name, Numeric Value, Buffer Size min, Buffer Size max, Buffer Increment Step, Formatter ID, Formatter Configuration Flags, Formatter Configuration String.
For more information on Formatters refer to Formatters section.
Any parameter can be skipped by specifying no value at the corresponding place. Note: comma still required if there are more values to specify. Any parameter can be skipped without specifying comma if there are no more values to specify until the end of line.
Sample WlanMon.oid file:

	#WlanMon OID definition file

#format:

#Name, Value, BufferMinSize, BufferMaxSize, BufferStep, Formatter, FormatterConfigFlags, FormatterConfigString

#

OID_ATH_XMIT_FILTERED, 0xFF000000, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_RETRIES, 0xFF000001, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_EXCESSIVE_RETRIES, 0xFF000002, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_ACK_RSSI, 0xFF000003, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_HW_ACKS_MISSING, 0xFF000004, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_RTS_ERRORS, 0xFF000005, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_REQUESTS, 0xFF000006, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_REQUESTS_DENIED, 0xFF000007, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_FIFO_UNDERRUNS, 0xFF000008, 4,,,WlanMon.FormatDWORD

OID_ATH_XMIT_DATA_RATE, 0xFF000009, 4,,,WlanMon.FormatDWORD

OID_ATH_RCV_RSSI, 0xFF00000A, 4,,,WlanMon.FormatDWORD,,dBm

OID_ATH_RCV_SW_FCS_ERRORS, 0xFF00000B, 4,,,WlanMon.FormatDWORD

OID_ATH_RCV_HW_FCS_ERRORS, 0xFF00000C, 4,,,WlanMon.FormatDWORD

OID_ATH_RCV_DECRYPT_ERRORS, 0xFF00000D, 4,,,WlanMon.FormatDWORD

OID_ATH_RCV_DUPLICATES, 0xFF00000E, 4,,,WlanMon.FormatDWORD

OID_ATH_RCV_MULTIPLE_DUPLICATES, 0xFF00000F, 4,,,WlanMon.FormatDWORD

OID_ATH_RCV_FIFO_OVERRUNS, 0xFF000010, 4,,,WlanMon.FormatDWORD

OID_ATH_RCV_DATA_RATE, 0xFF000011, 4,,,WlanMon.FormatDWORD

OID_ATH_RCV_MULTICAST_FRAMES, 0xFF000012, 4,,,WlanMon.FormatDWORD

OID_ATH_CURRENT_CHANNEL, 0xFF000013, 4,,,WlanMon.FormatDWORD

OID_ATH_TURBO_MODE, 0xFF000014, 4,,,WlanMon.FormatDWORD

#

OID_802_3_CURRENT_ADDRESS, 0x01010102, 6,,,WlanMon.FormatString,6,-

OID_802_3_PERMANENT_ADDRESS, 0x01010101, 6,,,WlanMon.FormatString,6,-

3.5 Formatters
Formatters are COM modules which are responsible for formatting raw buffer received from the driver in request to OID. Each formatter expose the following interface

	Options
	DWORD specifying configuration options

	OptionString
	string specifying configuration options (besides Options flags)

	Configure(HWND hWndParent)
	displays configuration dialog for formatter, and stores configuration options in the above two properties

	Format([in] DWORD dwSize, [in, size_is(dwSize)] void* pData, [out, retval] BSTR* pbstrValue);
	Format the buffer according to the formatter configuration

If third party application needs to store formatter configuration – it is necessary to store Options and OptionString property values.

There are two basic formatters available with WlanMon.
3.5.1 String Formatter

This formatter is used for formatting raw buffer as string output.

For more information on formatting options refer to the formatter configuration dialog. It is accessible through Add/Modify OID dialog on the Custom OIDs property page.

3.5.2 DWORD formatter

This formatter is used for formatting buffer as numeric value as decimal or hex values.
For more information on formatting options refer to the formatter configuration dialog. It is accessible through Add/Modify OID dialog on the Custom OIDs property page.
3.6 Loggers
Logger is the COM module which is responsible for recording data into the log file or retrieving data from the log file. The following methods are available for any Logger object:

	Open([in] BSTR bstrFileName, [in] long nFlags)
	Opens log file, if nFlags = 0 then, for reading, if nFlags = 1, then for writing.

	Close();
	close previously opened log file

	HeaderItemCount([out, retval] long *pVal)
	returns number of header items

	SetHeaderItem([in] BSTR bstrName, [in] long nSize, [in, size_is(nSize)] void* pData, [in] BSTR Formatter, [in] long FormatFlags, [in] BSTR bstrFormatString);
	sets the value of header item

	GetHeaderItem([in] long nIndex, [out] BSTR * pbstrName, [in, out] long* pnSize, [out, size_is(*pnSize)] void** ppData, [out] LPDISPATCH* ppFormatter);
	gets the value of header item

	ColumnCount([out, retval] long *pVal);
	returns number of columns

	AddColumn([in] BSTR Name, [in] BSTR Formatter, [in] long FormatFlags, [in] BSTR bstrFormatString);
	adds column to the file

	SetColumnValue([in] BSTR Name, [in] long nSize, [in, size_is(nSize)] void* pData);
	sets/changes column value

	SetColumnValueByIndex([in] long nIndex, [in] long nSize, [in, size_is(nSize)] void* pData);
	sets/changes column value specified by its index

	GetColumnName([in] long nIndex, [out, retval] BSTR* pName);
	retrieves column name

	GetColumnValue([in] BSTR Name, [in, out] long* pnSize, [out, size_is(*pnSize)] void** ppData, [out] LPDISPATCH* ppFormatter);
	retrieves column value

	GetColumnValueByIndex([in] long nIndex, [in, out] long* pnSize, [out, size_is(*pnSize)] void** ppData, [out] LPDISPATCH* ppFormatter);
	retrieves column value specified by its index

	NextLine([out, retval] BOOL * pbOK);
	skips to the next line, or returns 0 if no more lines or error occurred

	IsOpen([out, retval] BOOL *pVal);
	returns 1, if log file is opened, either for reading or writing

	vbGetColumnValue([in] BSTR bstrName, [out, retval] BSTR* pbstrValue);
	retrieves formatted value for the column

	vbGetColumnValueByIndex([in] long nIndex, [out, retval] BSTR* pbstrValue);
	retrieves formatted value for the column specified by itss index

	vbGetHeaderItemName([in] long nValue, [out, retval] BSTR* pbstrValue);
	gets header item name

	vbGetHeaderItemValue([in] long nIndex, [out, retval] BSTR* pbstrVal);
	gets header item value

3.6.1 Text logger
This logger writes formatted data into the text file. There is no information on which formatter where used after file is created. Only formatted data is available, there is no raw data stored in the file. To preserve raw data buffers queries from driver, use Binary logger.
Note: Text Logger does not provide read functionality. It can be used only for logging data into the file. However, since it is straight text file with tab delimited values, files created by this logger, can be easily read using large family of applications currently available, such as Microsoft Word or Microsoft Excel.
3.6.2 Binary logger

This logger stores raw buffer data as well as information on which formatter to use to format data, and corresponding formatter configuration flags and strings.
Refer to WlanMonLogFile.html for an example of reading binary log files created using Binary Logger.

4 WlanMon Application Programming Interface
The following API is available through WlanMon helper objects.
4.1 Objects

WlanMon.Helper - main helper object
Adapter – an object representing wireless network adapter

4.2 WlanMon.Helper object
Main object is representing WlanMon functionality.
This object supports the following methods and properties:

	AdapterCount
	number of adapters in the system

	Adapter(index)
	returns an adapter object from the given index

	RefreshAdapters
	refreshes adapter list

Sample (VBScript):
	 Set o = CreateObject("WlanMon.Helper")

 MsgBox o.AdapterCount

 For i = 0 To o.AdapterCount - 1

 MsgBox o.Adapter(i).DeviceID

 Next

 Set o = Nothing

4.3 Adapter object
This object represents a single wireless network adapter in the system
Supports the following methods and properties:

	DeviceID
	hardware id

	DeviceName
	name of the adapter

	Service
	service name

	DriverSubKey
	registry subkey for the adapter

	DriverEnabled
	driver enabled flag (TRUE | FALSE)

	EnableDriver(BOOL bEnable)
	method to enable or disable driver

	GetOID([in] DWORD dwOID, [in, out] DWORD* pdwSize, [in, out, size_is(*pdwSize)] void* pBuffer);
	query OID from the driver

	vbGetOID([in] long dwOID, [in] long dwSize, [out, retval] VARIANT* pBuffer);
	query OID from the driver (automation supported)

	SetOID([in] DWORD dwOID, [in] DWORD dwSize, [in, size_is(dwSize)] void* pBuffer);
	set OID to the driver

	vbSetOID([in] long dwOID, [in] VARIANT pBuffer);
	set OID to the driver (automation supported)

	vbGetOIDStr([in] long dwOID, [in] long dwSize, [in] LPDISPATCH pFormatter, [out, retval] BSTR* pbstrValue);
	query OID from the driver and format returned buffer

4.4 Samples

Sample 1 (VBScript):

The following sample queries for current SSID, then set new SSID “KuKu”, then re-queries current SSID to check whether SSID has changed. This code is for purposes of sample only and does not reflect the best way to do this.
	 Set o = CreateObject("WlanMon.Helper")

 If (o.AdapterCount > 0) Then

 Set a = o.Adapter(0)

 MsgBox "Working with [" & a.DeviceName & "] ..."

 Length = 1024

 Ssid = a.vbGetOID(&HFF000018, Length)

 strOut = ""

 For i = 0 To UBound(Ssid)

 strOut = strOut & Chr(Ssid(i))

 Next

 MsgBox strOut

 Dim Ssid2(35) As Byte

 Ssid2(0) = 4

 Ssid2(1) = 0

 Ssid2(2) = 0

 Ssid2(3) = 0

 Ssid2(4) = Asc("K")

 Ssid2(5) = Asc("u")

 Ssid2(6) = Asc("K")

 Ssid2(7) = Asc("u")

 Ssid2(8) = 0

 a.vbSetOID &HD010102, Ssid2 ' OID_802_11_SSID

 Ssid = a.vbGetOID(&HFF000018, Length)

 strOut = ""

 If Not IsEmpty(Ssid) Then

 For i = 0 To UBound(Ssid)

 strOut = strOut & Chr(Ssid(i))

 Next

 End If

 MsgBox strOut

 End If

Sample 2 (VBScript):

This sample demonstrates query OID and format data using DWORD formatter:

	 Set o = CreateObject("WlanMon.Helper")

 If (o.AdapterCount > 0) Then

 Set a = o.Adapter(0)

 MsgBox "Working with [" & a.DeviceName & "] ..."

 Set Formatter = CreateObject("WlanMon.FormatDWORD")

 Formatter.OptionString = "dBm"

 NoiseFloor = a.vbGetOIDStr(&HFF000020, 4, Formatter)

 MsgBox "Current Noise Floor = -" & NoiseFloor

 End If

Atheros Confidential - Page 20 - 9/27/2005

